De novo sequencing, peptide composition analysis, and composition-based sequencing: a new strategy employing accurate mass determination by fourier transform ion cyclotron resonance mass spectrometry.

نویسنده

  • Bernhard Spengler
چکیده

A new strategy is described for the determination of amino acid sequences of unknown peptides. Different from the well-known but often inefficient de novo sequencing approach, the new method is based on a two-step process. In the first step the amino acid composition of an unknown peptide is determined on the basis of accurate mass values of the peptide precursor ion and a small number of accurate fragment ion mass values, and, as in de novo sequencing, without employing protein database information or other pre-information. In the second step the sequence of the found amino acids of the peptide is determined by scoring the agreement between expected and observed fragment ion signals of the permuted sequences. It was found that the new approach is highly efficient if accurate mass values are available and that it easily outstrips common approaches of de novo sequencing being based on lower accuracies and detailed knowledge of fragmentation behavior. Simple permutation and calculation of all possible amino acid sequences, however, is only efficient if the composition is known or if possible compositions are at least reduced to a small list. The latter requires the highest possible instrumental mass accuracy, which is currently provided only by fourier transform ion cyclotron resonance mass spectrometry. The connection between mass accuracy and peptide composition variability is described and an example of peptide compositioning and composition-based sequencing is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate mass as a bioinformatic parameter in data-to-knowledge conversion: Fourier transform ion cyclotron resonance mass spectrometry for peptide de novo sequencing.

With the availability of ultra-precise mass spectrometric biomolecular data, the accurate mass is becoming a physical quantity of high interest for bioinformatics tools and strategies. Fourier transform ion cyclotron resonance mass spectrometry with electrospray ionization or matrix-assisted laser desorption/ionization sources now allows the easy determination of amino acid composition of mediu...

متن کامل

De novo sequencing of peptides on single resin beads by MALDI-FTICR tandem mass spectrometry.

An efficient approach in combinatorial chemistry is the synthesis of one-bead-one-compound peptide libraries. In contrast to synthesis and functional screening, which is performed in a largely automated manner, structure determination has been frequently laborious and time-consuming. Here we report an approach for de novo sequencing of peptides on single beads by matrix-assisted laser desorptio...

متن کامل

Peptide and protein characterization by high-rate electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry.

The analytical utility of the electron capture dissociation (ECD) technique, developed by McLafferty and co-workers, has substantially improved peptide and protein characterization using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The limitations of the first ECD implementations on commercial instruments were eliminated by the employment of low-energy electron-inject...

متن کامل

Electron capture dissociation of singly and multiply phosphorylated peptides.

Analysis of phosphotyrosine and phosphoserine containing peptides by nano-electrospray Fourier transform ion cyclotron resonance (FTICR) mass spectrometry established electron capture dissociation (ECD) as a viable method for phosphopeptide sequencing. In general, ECD spectra of synthetic and native phosphopeptides appeared less complex than conventional collision activated dissociation (CAD) m...

متن کامل

De novo sequencing and disulfide mapping of a bromotryptophan-containing conotoxin by Fourier transform ion cyclotron resonance mass spectrometry.

T-1-family conotoxins belong to the T-superfamily and are composed of 10-17 amino acids. They share a common cysteine framework and disulfide connectivity and exhibit unusual posttranslational modifications, such as tryptophan bromination, glutamic acid carboxylation, and threonine glycosylation. We have isolated and characterized a novel peptide, Mo1274, containing 11 amino acids, that shows t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society for Mass Spectrometry

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 2004